三叶草啓迪港大学者 研发可形变三维摺纸微流控
2022-06-12 14:51
香港大学的工程专家从三叶草的倾性运动蒙受啓迪,研发出一种摺纸微流控装置,可对外界环境变化作出反应,例如温度、光线的强度和湿度。该研究团队由港大机械工程系教授岑浩璋指导,并由博士潘益率领,将刺激响应材料嵌入至薄的弹性体微流控装置,以实现该装置对温度、湿度和光线的反应。透过可折叠式几何形状的设计,该装置会遵循预设的摺纸折叠。该项创新型工程设计已于《科学进展》发表,更被重点推介为封面文章。
研究团队将此项可变形的微流控装置命名为 TransfOrigami microfluidics(TOM),来强调它的形状变化和摺纸结构之间的密切联系。这项重大突破对于未来实现微流控装置可因应环境而作出变化具有深远意义。微流控学是一门跨学科的新兴领域,研究可操纵和处理微量液体的系统。如今其重要性与日俱增,尤其是精准医疗相关领域,皆因微流控装置从药物递输到组织工程的生物医学应用层面均潜力无限。多年来微流控装置的微通道结构只局限于二维平面,此项三维微流控结构TOM开元拓新,可根据环境刺激而如三叶草般折叠,实属史无前例。
潘益表示,TOM可用作一种具有环境适应能力的光微反应器。它能感知环境刺激,并通过形态变换,将环境刺激正向回馈予正在经受光合作用的微观流体中。当外部环境适宜光合作用时,比如在晴朗的日子,该装置就会展开,促进光合作用。当外部环境不利于光合作用时,如下雨的时候,该装置就会折叠以减缓光合作用。
个中原理有望进一步广泛应用,例如用于动态人工血管网络和形状自适应软性电子设备等。岑浩璋指,活机体通常是动态,且具有一定的移动节律。当开发的器官晶片具备对环境作出反应的功能时,将更接近真实的活机体,或有助促进微流控装置(器官晶片)模拟器官的功能成效。
动态人工血管网络预计将成为TOM和器官晶片的潜在结合体,而形状自适应软性电子设备则有望成为TOM和软性电子设备的互融体。在穿戴式软性电子设备中,设备形状与人体表面形状的契合度会影响讯号感应效率,如软性电子设备遇刺激会变形,或有助设备循著人体表面形状而灵活形变,从而提升软性电子设备使用效率。沿用传统制造材料的合成微流控系统,能够呈现像植物般因环境而变化的能力属极其罕见。若微流控系统具有因遇刺激而变形的能力,将为更精密准确、功能灵活、甚至智慧型流控系统铺平前路。因此,研究团队将三叶草倾性运动实践于微流控装置。
岑浩璋指,植物进化其环境应变能力以求存。这让其脉管系统,即植物运输水份和养料的网络,尽管身在瞬息万变的环境,仍能健康运作。这种脉管系统啓迪科学家研发兼具嵌入式流道的人造系统,比如仿生的微流控装置。他相信这是一个典型而且具啓发性的例子,说明人类可遵循大自然的灵感来推进工业设计。团队致力于揭晓更多关于软物质、微流体及其他领域的奥秘。这项研究志于实践自适应光合作用,为植物啓发式形变摺纸微流控用途开拓先河。
立即下载|全新《星岛头条》APP:https://bit.ly/3yLrgYZ
最新回应